

APEXTM Antibody Discovery and Production Technology

Vu L. Truong PEP Talk Conf. San Diego 24Jan20

Outline

- Single cell cloning & mAb discovery
- B-cell immortalization using cell fusion
- Enhanced mAb production of established cell lines
 - CRISPR-enabled activation of transcription regulatory genes
- mAb production CHO cell line technology

Outline

- Single cell cloning & mAb discovery
- B-cell immortalization using cell fusion
- Enhanced mAb production of established cell lines
 - CRISPR-enabled activation of transcription regulatory genes
- mAb production CHO cell line technology
- COMING SOON: Transposons-mediated gene amplification

Antibody Discovery and Production Challenges

Single Cell Screening & Clonal Selection Using NanoArrays

APEXTM

Nanoculture Arrays

Key Features

- Enables comprehensive, **functional screening at single cell level** of 10⁶-10⁷ cells simultaneously
- ~100,000x minimization of tissue culture wells.
 0.5 to 3 million wells can be accommodated in a 96-well plate surface area
- Increase protein concentration by ~5-orders of magnitude enables sub-picogram mAb detection
- Enables simultaneous single cell cloning and plucking by microneedles for expansion
- Proteins, viruses, bacteria can be adsorbed as antigen for detection of mAb
- Highest binders can be identified in ~1-2 days

Fabrication of Nanoculture Arrays

Key Features

- Simple, reproducible fabrication process
- Scalable, cost effective, no specialized companion equipment
- Variety of dimensions, geometries, biocompatible polymer materials with surface chemistries
- Variety of biomaterials can be adsorbed

B-cell Repertoire Screening, Single Cell Analysis & Single Cell Cloning with APEXTM Nanoarrays

Versatile On-chip Assay Format for Single Cell Analysis

Top view of Nanoculture wells (A-D). Wells are embedded with antigen as indicated, followed by detection with fluorescence labeled

secondary mAb

Live B-cell secreting Anti-RSV Fprotein IgG (=antigen)

Antigen= Human AR-105 mAb

Antigen= adsorbed whole cell *P. aeruginosa* bacteria expressing alginate (detected w/ anti-alginate mAb)

Antigen = Adsorbed intact rotavirus expressing G1 protein (detected with anti-G1 mAb)

Sideview of Nanoculture wells

APEXTM Technology Suite

- Single cell cloning & mAb discovery
- B-cell immortalization using cell fusion
- Enhanced mAb production of established cell lines
 - CRISPR-enabled activation of transcription regulatory genes
- mAb production CHO cell line technology

Current Practice: Recombinant approaches to mAb discovery & production requires 1.5 - 2 years from discovery to drug in vials

Bypassing Recombinant Approaches Using B-cell Fusion & Immortalization

Engineering of the Fusion Partner Cell Line

Genetically engineered, non-secreting IgG mouse heteromyeloma cell line developed with high cell fusion efficiency

Genetic modifications introduced to **activate master transcription factors** associated with increased transcription and translation of H & L chain genes of monoclonal antibodies. Exhibits

- Immortality
- CHO-level productivity
- Stability

Key Feature

Contains stable integrated CRISPR machinery

 Cas enzyme, accessory proteins, and guided RNAs necessary to activate endogenous master transcription factors

B-cell Screening & Cell Fusion Proof-of-Concept Study: RSV mAb Discovery

RSV-F antigen used for PoC study

- Availability of primary RSV-F+ B-cells from biobanks
- Well described structure of RSV-F protein
- Antigen specific tools, assays and reagents are available

Repertoire Screening & Cell Fusion Work Flow

ISOLATE PBMCS

B-CELL EXPANSION

IMMORTALIZED MAB SECRETING PROGENY

CLONAL SELECTION

PRODUCTION

RSV-F Ag-specific Human B Cell Activation

Engineered Fusion Partner Exhibits High Fusion Efficiency

On-chip Single Cell Fusion: 10%-20% Fusion Efficiency [i.e. 10-20% of progenies that fused, survived, and are producing mAb]

After Fusion

Left: 16x16 array of fused hybridoma at Day 27 post-fusion; Right: distribution of hybridoma clones that are producing IgG. Fluorescence intensity is used as a metric of IgG secretion level

Rapid identification of high-producing RSV-F specific hybridoma

A. Panel of nanowells of hybridoma producing Human anti-RSVF mAb. **B.** Distribution of fluorescent ring intensity of anti-RSVF production compared to CHO-Aer. ** Denotes production levels higher than CHO-Aer producing at 3.5 g/L.

High content screening allows for rapid identification of rare high-producing hybridoma clones

- (A) Hybridomas generated from cell fusion compared to CHO-Sal were screened for mAb secretion on nanocultures. ~24,000 positives identified for MabIgX ® hybridomas/ ~ 33,000 positives identified for CHO-Sal.
- **(B)** Mean fluorescence intensity of the (B) 50 highest producing clones and **(C)** Correlation of mean intensity units to cumulative volumetric titer of cell lines with experimentally-determined productivity (*** p<0.0001 by Student's t-test, n=50.
- (D-E) Representative panel showing single cell IgG production of (D) Hybridoma and (E) CHO-Sal (1 g/L volumetric titer)

Stable Hybridoma Productivity Comparable to CHO over 60-Generations

- Endpoint titer of 3 hybridoma clones producing human IgG demonstrates consistent productivity at each time point
- Titer at generations 6, 24, and 60 shown
- CHO-Sal producing at 1 g/L was used as a comparator for all stability studies

Cell Fusion to Create Hybridoma: Advantages & Disadvantages

Advantages:

Well established process

Disadvantages:

Up to ~1 year longer than the hybridoma approach

Advantages:

- Convenient B-cell starting point
- Bypasses recombinant steps
- Little to no process development needed
- Fastest to clinical manufacturing

Disadvantages:

Involves hybridoma*

^{*}Can derive CHO while in Phase 1-2 clinical studies

Outline

- Single cell cloning & mAb discovery
- B-cell immortalization using cell fusion
- Enhanced mAb production of established cell lines
 - CRISPR-enabled activation of transcription regulatory genes
- mAb production CHO cell line technology

Key Master Transcription Factor Genes of Interests

- Transcription factor genes selected for CRISPR mediated addition & activation
 - Drm2
 - Fr5
 - Bxp2
- Promotor activation is universal and can be applied to any host cell irrespective of B cell lineage

CRISPR-Cas Targeted Gene Activation

^{*}Transcriptional state site (TSS), homology-directed repair (HDR), non-homologous end joining (NHEJ)

Multiplex CRISPR Guided Activation (CRISPRa)

- In traditional activation, open reading frames (ORF) of genes need to cloned under a ubiquitous promoter. The size of ORF is a rate-limiting step as only 1-2 genes can be activated
- 2. Short gRNA (20 nt) for transcriptional activation allows for multiple concomitant activation of genes
 - Potent activation of genes from 20-100 fold
- 3. Stable expression of dCas-VP64 recognizes canonical protospacer motif (PAM) on gRNA targeting regions within 200bp of the transcriptional start site (TSS) of the plasma cell master regulators: Drm2, Fr5 and Bxp2.
- Activation of the three transcription factors: Drm2, Fr5 and Bxp2 trigger a cascade of events to enhance antibody production:

Multiplex TF Activation by CRISPRa

Current Challenges

- gRNA that allow for potent transcriptional activation needs to be empirically be determined
- Not all gRNAs will activate gene transcription
- Multiple transfection and transduction are required for a single gene
- Current CRISPRa technologies at best can only activate two gRNAs at a time

Csy4 gRNA1 scaffold gRNA2 scaffold gRNA3 scaffold U6 Csy4 binding

Aridis Multiplex CRISPRa

- Utilizes a unique and modular gRNA scaffold design for multiple processing of gRNAs in a single vector
- Synergistic activation of multiple genes in the sample molecular pathway superior to a single gRNA activation

Potent synergistic activation of transcription factors in Fusion Partner by multiplex guided RNAs

Synergistic activation of master transcription factor genes

- Predicted synergistic activation of targeted transcription factors with single gRNA
- Multiplex approach showed higher transcriptional activation transcription factors compared to single gRNA activation

<u>Hypothesis:</u> CHO production cell lines have similar master transcription regulatory elements, but are not comparably activated or utilized as in B-cells

Question: Can B-cell MTREs Enhance Productivity of Existing mAb Production CHO Cell Lines?

CRISPR-Activation of Endogenous Master TF Regulatory Elements Increases Productivity a CHO Production Cell Line

A-B. Significant increase in single cell IgG production measured using nanoculture arrays. B. Expression of Drm2 & Bxp2 in CRISPRa CHO **C.** Representative panel. Right panels show an inset of single well containing 100,000 nanowells. Data represents average titer over 100,000 wells. *** p<0.0001 by Student's t-test, n = 100,000.

Case Study #2: CRISPR-Activation of Endogenous Master Transcription Regulatory Elements of CHO-Sal Cell Line

^{*}Pools of APEX CHO-Sal after 3 weeks selection in antibiotics were seeded on nanowells and top 50 clones were isolated using micromanipulator. E2 clone was further subcloned and expanded for 3 weeks in CHO CD medium. Following expansion, CHO-Sal and APEX CHO-Sal (E2) clone was plated on nanowells for IgG Diffusion Assay. Figure on left shows top 100 lead clones ring intensity distribution after 1 day for original CHO-Sal (volumetric titer: 1 g/L) and stable APEX CHO-Sal (E2 clone) with stable MTRE

Outline

- Single cell cloning & mAb discovery
- B-cell immortalization using cell fusion
- Enhanced mAb production of established cell lines
 - CRISPR-enabled activation of transcription regulatory genes
- mAb production CHO cell line technology

Current State of the Art in mAb Manufacturing

Product Concept:

- Engineered CHO cell lines with CRISPR-mediated transcription activation harboring a full length mAb H/L genes that is designed to be swapped out for the CDR or H/L of interest
 - Integration sites and H/L gene copy numbers are known and unchanged
- CDR or H/L can be switched from the cell line without significant modification of established upstream & downstream manufacturing processes

APEX's BREATHTM CHO Master Cell Line:

Development of a Manufacturing Process Template

Master Cell Line Harboring IgG₁

Ready for IgG₁ Gene Swap

√ MTRE activated

By CRISPR

V Manufacturing Process to be Developed

√ Scalability to
GMP Manufacturing to be
demonstrated

B.R.E.A.T.HTM B-cell Regulatory Elements Assisted Transcription Host

APEXTM CHO Cell Line: CDR or H/L Chain Swappable CHO Host

B.R.E.A.T.HTM B-cell Regulatory Elements Assisted Transcription Host

APEXTM Technology Solutions

CRISPR-Cas Targeted Gene Replacement

^{*}Transcriptional state site (TSS), homology-directed repair (HDR), non-homologous end joining (NHEJ)

Engineering of CHO with B-cell Master Transcription Factors (B.R.E.A.T.HTM CHO)

Genetically engineered transfection-ready production CHO cell line harboring H &L chains of a human IgG1 and B-cell master transcription factor regulatory elements

Proprietary CRISPR-Mediated Activation

Genetic modifications introduced to activate transcription factors to promote productivity and stability

- High productivity
- Stability

Engineered for Productivity

- Engineered as a host cell line to accommodate cloning of human H & L chain CDRs or full-length H & L chains by homologous recombination
- Proprietary vector system allows for dual promoter, highcopy amplification of plasmid DNA

Target Specific Insertion of Heavy and Light Chain CDR3 Genes

Aridis' approach technology utilizes CRISPR/Cas to achieve site specific integration of antibody heavy and light chain genes for maximum productivity

APEXTM Technology Suite

B-cell Repertoire Screening: APEXTM NanoArrays

B-cell immortalization using cell fusion

mAb Productivity Enhancement: APEXTM CRISPR-assisted TF activation

BREATHTM CHO Master cell line designed for CDR swapping

